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SOME LITTLE NIGHT PROBLEMS

We have borrowed, unfairly perhaps, the title of this presentation from
Lis Mozart's Eine Kleine Nachtmusik. We intend no reflection on the beauty of

Mozart's music, but we are more interested in the task of engaging students in
mathematics to the point that Mozart's music (or any of the music that more

C1 frequently assaults the ears of our students) may be resented because it interferes
with their concentration. We want to see our students intrigued by mathematics
problems in a way that most textbook practice exercises do not demand, caught up

1"4 by "little night problems" that can occupy the night hours as rewardingly as Mozart
has for music lovers.

The great majority of exercises that appear in the standard textbooks are
designed to help students to achieve skills-mastery. Most of the others are
intended to help students develop "problem-solving skills," whatever that may mean
to the textbook authors. These are laudable goals and truly essential for our
students. It also seems likely that a great many of our students can anticipate at
most a modicum of skills and, we would surely hope, some problem solving ability,
despite our best efforts as teachers to share our collective wisdom.

At the same time, however, most of us are fortunate enough to teach at least
a few students who are capable of much more than minimal skills acquisition. Such
students are not well-served if we do nothing more than assign them lots of stan-
dard, or even "challenging," exercises. While many talented students thrive on a
regimen of working through great quantities of exercises, and certainly succeed
admirably in their school careers, they may never encounter any real mathematics
or experience the excitement of the discipline that lured most of us into our pro-
fession.

Novelist Walker Percy in an essay, "The Loss of the Creature," decries the
failure of our educational system to engage students, to allow them a genuine
encounter with the objets of education. Compare two educational experiences of
the sort suggested by Percy's essay:

(1) A frog, properly labeled as a specimen of a particular species, is laid out on
a dissecting table, together with a scalpel and a list of mimeographed questions to be
answered in order.

(2) A student, with the guidance of a teacher, finds and identifies her own frog
and proceeds to try to determine why one particular valve opens in this direction
rather than the other, expected, way.

Those of us who must deal with the realities of day-to-day teaching, with
the number and diversity of student abilities and interests, recognize the necessity,
the absolute unavoidability of providing experiences like (1). At the same time, we
have no illusions about which kind of experience is more significant for the learner.

In mathematics, our laboratory is largely problem-solving, with pencil and
paper augmented by calculators, and sometimes computers, as our dissecting tools.
In our laboratories, we cannot avoid laying out frogs and listing questions to be
answered, but when we identify a student with the curiosity and interest to benefit
from an individual field trip, we should surely extend an invitation and provide
guidance.

In almost all of their problem solving work, our students are trying to solve
our problems, not theirs. Their motivation comes from trying to please their
teachers or to earn a good grade. The questions students must tackle are almost
never generated by their own interest. Mathematics is presented as a finished
edifice, all done, built in the past by geniuses far removed from ordinary experi-
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ence. We communicate no sense of the vitality and vigor of a living subject,
growing faster today than ever before, responding to present needs and intellectual
curiosity. But just as a knowledgable biology teacher can arouse curiosity about
some structural anomaly, if we are alert to opportunities, we can sometimes engage
students in explorations of their own. They can be led to ask, "What happens
if...?" or "Is it always true that...?" or "Why can't...?," and the questions are truly
their own, and the answers they find constitute their own mathematics.

Our proposal, tnough certainly not novel, is simply that we invite some of
our better students to "ponder mathematics," by tackling questions that may not
even have an "answer." The problems we consider here we have used both with
individual students and with some classes. Some classes lend themselves well to
collective pondering; other classes are too tightly scheduled to allow much
exploration as a group.

Our goal is college algebra level problems that are open-ended, where the
resolution of one question suggests other, related, questions. The real value of
these problems is in thinking hard about what is happening, making guesses,
validating or invalidating guesses , or even just looking at enough examples to
strengthen the conviction that a guess should be true. We know that we have
succeeded when we get a complaint that someone has stayed up beyond the normal
hour, or even better, has awakened during the night to think about a problem. We
present herewith a sampling of problems that have bothered us to the extent that
they became our own Night Problems. We claim no more originality or ownership of
these problems than that earned by affection and familiarity.

Night Problem N. PRIMES IN UNEXPECTED PLACES

Consider the function f(n) n 1, 2, 3,.... Some of the values in
the range of the function are positive integers. For example,

f(1) - 5, f(2) - 7, f(5) - 11, f(7) - 13, f(12) - 17, f(15) - 19.

What kind of integer:: are included in the range of f?
One obvious observation is that all of the values listed above are odd, but 15

is missing. Assuming that we have tried 8, 9, 10, and 11 for n without getting 15, it
should be clear that 15 isn't in the range, so the range cannot include all odd
numbers greater than 3.

Does the range of f include any even integers? In particular, is there an
integer n for which f(n) - 20? or an integer n for which n - 44?
Is there an integer n for which f(n) is ever even?

All of the integer range values listed above are prime:
5, 7, 11,13, 17,19.

Does this continue? Is there an integer n for which n - 23? 29? for any
given odd prime?

Are primes the only integers in the range of f? Is there an integer n for
which n 21? 25? 27? 33? 35? 49?

How can we distinguish between the odd integers for which there is a
solution, the integers that are in the range of 1, and the odd integers that
do not belong to the range of f?
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Night Problem *2 PYTHAGOREAN TRIPLES (in or out of triangles)

As a way to get students into the problem, we usually begin with a particular
family of solutions. Almost all students can come up with the examples of 3,4,5 and
5,12,13 triangles, in both of which the hypotenuse differs from the longer leg by 1.
If we look at sides a,b,c and perimeter P and area A, then we ask students to fill in
the following table, considering some questions:

..1muiumal
mimeumuirm
Nom
wilmumnirm

If one divisor of P is a, what is the other divisor?
If one divisor of 2A is P, what is the other divisor?
What are the entries on Row 3? on Row 5? on Row n?
Do your formulas on Row n satisfy the equation a2+ b2 C2?

A much less well-known family comes from another table, which may be more
challenging to decipher. We may ask, for example:

What are the factors of a? of b? of P? How are a and P related?
Is c always prime?
What is the difference between c and b?
What are the entries on Row 3? on Row 5? on Row n?
Do your formulas on Row n satisfy the equation a2+ b2 c2?

The usual number-th
generating formulas of primitive Pythagorean triples
are not appropriate for most algebra classes. There is
a simple geometric exercise, however, which leads
students to their own derivation. Consider the unit
circle, with equation x2+ y2 - 1, and the line Lm
through the point (0,-1) with slope in: y mx-1. Then
Lm intersects the circle in the point (0,-1) and another
point, P(m). If the slope is any number greater than 1,
then P(m) is in the first quadrant. See Figure 1. Then tr.-I)

we ask: t"'"(.4.fe
What are the coordinates of P(m) in terms of the slope m?
If m is a rational number, say m - lily, must the coordinates of P(m) in

terms of u and v be rational? have the same denominator? If P(m) is, say,
(alc, NO, what can you say about a2+ b2?

Row a P

1 15 8 J7 40 ...

2 21 20 29 70

3

4 39 80 89 208

5
?orate dei ivation for the standard

4
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Now suppose that a first quadrant point P on the unit circle has rational

coordinates, say P - (a/c, b/c). What is the slope of the line through P and
the point (0,-1)?

From the answers to the previous two questions, can you find a formula
that generates all Pythagorean triples?

Night Problem *3 EXXING IN AND EXXING OUT (Solutions by Iteration)

One of the most familiar calculator keys is the key. Beginning with any
number between -1 and 1 and repeatedly pressing the key, we get a sequence {xn)
that converges to zero, a process we sometimes describe in class as "exxing in to 0."
Starling outside of the inteval (-1,1) gives a sequence that simply "exxes out,"
diverges. Just being familiar with the behavior of these sequences can help a
student later in understanding certainly limits, but more intriguing questions are
available immediately.

With the calculate. in radian mode, enter some number and press the MT)
key. Now continue to press the same key and watch the display. Pretty soon the
display will show only numbers beginning 0.7, and after a few more steps, all dis-
plays

constantly displaying a number, which to ten decimal places, is 0.7390
plays begin 0.73, then 0.739, 0.73908, and finally the display doesn't change

33.
Thus, to calculator accuracy, we have the following:

cos 0.7390 33 - 0.7390E533.
In other words, we have exxed in on a calculator solution to the equation cos x - x.

Make a sketch showing the graphs of y 2: and y - cos z. How does the
intersection point of the two graphs relate to the number 0.73909133 we found
above?

Now enter a number, change sign, and press the key; that is, evaluate the
function f(x) - ex, and iterate.

Make a sketch showing the graphs of y x and y ex. What are the
coordinates of the intersection point of the two graphs?

Make a sketch showing the graphs of y x and y (1/ex)2 e'A'2
Can you find the best calculator solution to the equation e-x x?
Make a sketch showing the graphs of y - sin x and y 1 - x. Can the

same iteration procedure be modi fied to solve the equation sin x - 1 - x?
The only solution to the equation sin x x is the number 0.

Make a sketch showing the graphs of y - sin x and y x. What
has pens if we iterate the function f(z) - sin x (that is, repeatedly press the

key)? WARNING: Be Prepared to exercise extreme patience. Access to a computer and running a program

with a loop to evaluate sin A many times will show that thousands of iterations makes very little progress toward the
solution of the equation sin x x. You may want to avoid just starting a loop with instructions to stop I hen the
iterations get to within a certain distance of zero.

What is the difference between the graphs of functions y f(x) for which
we can use iteration to efficiently solve the equation f(x) x (as we did for
cos x, e- x, etc.) and the graph of y - sin x?

Look at the graph of y - tan x and from the nature of the graph, guess
whether iteration of the tangent function is going to find the solution to the
equation tan x

What functions f generate .sequences that converge (reasonably quickly) to
a solution of f(x) - x?

Does it matter where we begin the sequence?
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Night Problem #4 NIGHTMARES AND DESCENT INTO CHAOS (More on Iteration)

Iteration schemes can solve quite efficiently, transcendental equations for
which we have no effective algebraic procedures, as with the equation cos x - x.
Students can also play with iterations to find solutions to equations that can be
solved directly in exact form.

Sometimes we have to manipulate an equation to get a
function that generated a convergent sequence. Consider the
fairly simple equation 2x - x2, for which two solutions, xt - 2
and x2 r. 4, are obvious. From the graph in Figure 2, we can
see that there is also another solution x3 which isn't easily
found by inspection. Manipulating the equation 2x - x2 to
isolate x, we can write

2X/2 or 2 In xx
In 2

suggesting two different functions for iteration:

fi(x) 2X/2 and f2(x) 21nIn2x

It is easy to verify that iterating ft exxes An on the solution
xt - 2 and iterating f2 exxes in on the solution x2 - 4. To
find xl requires some subterfuge, suggested by the following :

How is x3 related to the intersections of the graphs of
y x2 and y 2-7i What function might be iterated for
exxing in on the pertinent solution to the equation 22 -
x2? What is x3?

After looking at an equation for which we can see
simple solutions, how about a slightly more complicated
situation, say the transcendental equation, 2" Q x10? By
comparing with 2x - x2, it should be clear that there are two
solutions between -1 and 1, and since the exponential function
increases faster than any pownomial, there must be another
solution for some larger positive x.

Can we iterate functions similar to ft and 12 to find the positive solutions
to 2x - x")?

Could we use a graphing calculator or commercial graphing software (say,
Toolkit, for example) to locate the solutions to 2x - xlu?

The answer to the last questions deserves some comment. Iterating the
function F(x) - 10(ln x)/(In 2) quickly exxes in on the solution x3 - 58.77010594.
The calculator readily yields a corresponding y-coordinate of about 4.9x1017, which
our students recognize as "a pretty big number." Could we expect to see this inter-
section with Toolkit? Why not take a moment to discuss with students the kind of
numbers we often toss around without so casually? In considering the graphs of y
- 2x and y - x10, just how large a picture would it take to show the third intersec-
tion? A little computation shows that if our graph has a y-axis scale of 10 units
per inch, then tile y-value of the third intersection point would be about 5000
times the distance from the earth lo the sun!

In playing with equations to find iteration schemes for locating roots, we

6
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shouldn't be surprised to run into some equations for which nothing seems to work
very well. Can students profitably explore some of the limits of iteration? We've
already seen that straightforward iteration doesn't do much to locate the root of
the equation sin x x.

To better see what works and what doesn't, we like to look at problems for
which we already know the answers. Take, for example, the function f(x) -34x2- I.
Iterating f(x), we get a sequence similar to some we have already seen.

Starting with a member in the display such as 1.324 and iterating fix), the
numbers don't settle down readily; in fact, they seem to b3 bouncing back and forth
betieen numbers beginning -0.8 and others beginning -0.4. We appear to have two
subsequences, and furthermore, they seem to be moving closer together (we'd hope
toward a common goal, converging to a solution to the equation f(x) x). Unfortu-
nately, progress is so slow that we can't even be confident that the subsequences
are getting together eventually.

What about the possibility of doing some averaging? Store one of the
display values, call it x1, in memory, then get x2 by iterating f (that is, x2
f(x1)). Then take the average of x1 and 2.12, iterate, store, iterate, and
average again, and see what happens.

The convergence is very rapid toward the best calculator approximation to -
2/3, and it is easy to verify that f(-2/3) -2/3. The solution we have obtained
satisfies the equation, .1x2- x. With a quadratic equation, the quadratic formula
provides an exact solution; in this case, the roots are -2/3 and 2. While many
initial values give a sequence converging (at least in a leisurely fashion) to -2/3,
how can we get a sequence exxing in on 2? Finding values is surprisingly difficult.
Starting with 2 or -2, we trivially get a constant sequence. Beginning with 2.0001,
however, the sequence exxes out (diverges to co), and beginning with 1.9999 we get a
sequence that exxes in on -2/3.

Changing the form of the function can chavge the nature of the solution. In
this case, if we divide Waugh by x, we get ix - which can be rearranged
into the form x ;(I + X). Then using F(x) 1(1 + 51) and iterating, most initial
values generate sequences exxing in on 2 and it is as difficult to get a sequence con-
verging to -2/3 as it was to get one converging to 2 for the function f.

Given a quadratic equation az2+ bac + c 0, b 0, suppose
f(x) - (ax2+ c)/b and F(x) m -(t) + c/x)/a.

Will iteration of f(x) converge to one of the roots of the quadratic equation,
and if so, can you predict which one? Does the function F(x) generate
sequences converging to the other root?

The answer to this question is dramatically NO, as can be illustrated by
iterating the simple function f(x) 2x2- 1 (for which we would hope to get one of
the roots of the equation 2x2- 1 x, namely 1 or -1/2). As expected, beginning
with 0 or ±1, we soon get the constant sequence 1, 1, 1, ..., and ±0.5 leads to -0.5,
-0.5, -0.5, .... Virtually any other initial value, however, generates a genuinely
chaotic sequence in the sense that there is no convergence; the sequence wanders
around through the interval (-1, 1), repeatedly returning to numbers near previous
values, but never hitting them exactly. For example, beginning with x1 0.5100, in
twenty-seven steps we are within 0.0015 of xl (0.5015), then after another anothe-
forty-three steps we are within 0.0013 of x1 (0.498'7), but no nearer a solution. To
further aggravate the situation, the iteration is highly sensitive to the starting
point, the initial value. With an initial value of x1 0.509, in ten steps we have x10

7
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0.9797, but an initial value of x1 - 0.511 leads in ten steps to x10 - -0.8480. That

is, starting with two numbers within 0.002 of each other leads in ten iterations to
numbers that differ by almost 2, growing apart by a factor of a thousand. Then
in a few more steps the sequences almost match up again, before wandering off, each
listening to the beat of a different drummer.

Considering the quadratic functions f1(x) - 2. 1 and f2(x) 0 2x2- 1, we have
seen that iteration of f1 exxes in on a sC'ition of ,l.e equation f1(x) - x, while
iteration of f2 leads to chaos.

For what coefficients a can we iterate the function f(x) m axe- 1 and find
a solution to the equation f(x) x?

The list of Little Night Problems is, we hope, without end. We are confident,
at least, that the ctore of intriguing and fascinating questions far exceeds our
capacity in our lifetime. But these are not mere puzzles for intellectual enter-
tainment. If we can rework these problems into forms accessible to our students,
then they can find their own problems, explore some of their capabilities and limita-
tions, strengthen their mathematical and analytical muscles, and perhaps even create
their own mathematics.

Students, like teachers, have their own particular interests and certainly
function at various levels of mathematical sophistication. A problem that opens up
a world of fascination for one student may have no real interest for a classmate
who has essentially the same mathematical talent. The problems areas listed below
call on different kii.ds of algebraic preparation and skills. Some require considera-
ble patience and dedication while others may be cracked quite quickly (depending, of
course, on who is doing the cracking). We invite you to sample and tailor them to
the needs of your students.

Many of the night problems listed here are included in some form as "Explore
and Discover" exercises in our precalculus text and are reprinted here by permis-
sion of Scott, Foresman and Company.

#5. From Logarithms to the Golden Ratio
If logez logny logis(x + y), find the value of the ratio y /x.
Consider the logarithmic equation logax logbY logc(x + y). Show that

the ratio y/x has the same value for each of the following sequences a, b, c:
(1) 2, 6, 18 (ii) 4, 6, 9 WO 3, 12, 48.

What kind of sequence is a, b, c, in each of the above examples. Does every
such sequence a, b, c give the same value for the ratio y/x from the same
logarithmic equation, logax - logo loge(x + y)?

#6. Hinged Equilateral Triangles.
Given the vertical distances IADI - 7 and ICE, - 11 as in

the figure, find an equilateral triangle that can be fit as
shown (assuming the horizontal distance IDEI can be adjus-
ted as needed).

What if IAD! - 9 and ICE1 - 12? Show that there is still a
solution. Arc there any limitations on possible values for
IADI and ICEI? Are there values for which the ratio of the
horizontal distance to the length of the triangle is rational?
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17. Why Mess with Mathematical Induction?

Mathematical induction is almost always presented to students as a
mysterious technique to prove that some formulas, usually about sums, are true,
when it is obvious to those who look at a few examples, in the words of Li'l Abner,
"...as any fool can plainly see."

If students are given a chance to make their own guesses about formulas,
they may develop some appreciation, and a little more respect, for the discovery of
valid formulas, especially when some of their "obvious" guesses turn out to be
wrong.

7A. Given n points on a circle, connect each pair of points, and consider three
functions:

C(n) is the number of chords.
D(n) is the number of diagonals of the polygon obtained :onnecting the points

in order around the circle.
R(n) is the number of regions into which the chords the interior of the

circle, assuming that no three chords have a common interior point.

Rough sketchy provide the following data: On the l'asis of the numbers in the
table, guess a formula for R(n).

Look at the factors of the numbers
for C{n) and guess a formula. It
help to write the numbers as 2C(n)/2.

Extend the table to get enough data
to make a guess for u formula for

D{n). Ii may help to compare the numbers in the second row with the
numbers in the first row (C(n)).

1 2 33 4 5C(.10- 0 1 6 10
D(n) 0 0 0 2 5
R(n) 1 2 4 8 16

Are your formulas correct?
Proofs of the correctness of their guesses will certainly require thinking

about induction in ways different than those found in most textbooks. Validating
their guesses for C(n) and D(n) will be fairly straightforward for most curious
students. Interestingly, however, unless we provided lots of help, we have never
had a student who made the correct guess for R(n). The only reasonable
guesi on the basis of the given data requires doubling, which is simply not what is
happening. Only after considering sums of binomial coefficients does the guess get
better, and a proof remains a substantial challenge even after the correct guess.

715. For a given set S of natural numbers and a given natural number k, define the
k-shift of S denoted by S+k, to be the set obtained by adding k to every element of
S: S+k ( s+k Is e S ), so if S - (3, 5. 9, 18), then S+4 - (7, 9, 13, 22).

Let SI - {1} and &line Sn+1 [Se(n+1)] u (2n+1).
After writing out the first few sets, can you find a way to characterize

the numbers that appear in a given Sn? Hint: consider the numbers as
sums involving n.

Does every natural number appear in some tat least one) S72, or are there
some natural numbers that don't ever show up in any Sn? Proof?

A formal induction proof is probably too awkward for most students, but it's
not unreasonable to give a clear argument as to why the conclusion is valid.


